肿瘤康复网,内容丰富有趣,生活中的好帮手!
肿瘤康复网 > 一种CNTs增韧ZrB2基超高温陶瓷复合材料的制备方法与流程

一种CNTs增韧ZrB2基超高温陶瓷复合材料的制备方法与流程

时间:2023-08-15 08:40:06

相关推荐

本发明涉及陶瓷复合材料的制备

技术领域:

,具体的涉及一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法。

背景技术:

:随着航空航天技术快速发展,大气层内高超声速飞行器、高速再入飞行器等已经成为各国的研究热点,其高超声速、长时间飞行及可重复使用的服役特征对防热材料的耐温极限和耐久性、高温抗氧化和复杂载荷条件下的强韧化性能提出了苛刻的要求。而zrb2是一种典型的超高温陶瓷材料,在高超声速飞行器等方面有着广泛的应用前景。zrb2陶瓷应用的最大局限性就是其自身的脆性,为此人们采取了多种增韧手段来提高该类材料的断裂韧性,包括颗粒增韧、软相增韧、纤维增韧和晶须增韧等。cnts具有优异的力学性能,在增韧zrb2陶瓷方面有很大的研究价值。目前的研究进展表明,由于cnts具有很大的长径比,其在zrb2陶瓷粉体中的团聚将直接对材料的性能产生负面影响,解决cnts的团聚问题始终是制备cnts增韧超高温陶瓷复合材料的技术瓶颈。技术实现要素:1.要解决的技术问题本发明要解决的技术问题在于提供一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,能有效解决cnts在陶瓷粉体中的团聚问题,能有效改善材料的烧结性能,进而获得力学性能优异、抗弯强度高和致密度高的cnts增韧超高温陶瓷复合材料。2.技术方案为解决上述问题,本发明采取如下技术方案:一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,包括如下步骤:步骤一:取cnts加入到无水乙醇中进行超声分散,超声分散时间为30~60min,超声分散过程中对其进行持续震荡搅拌,得到cnts分散体;步骤二:将步骤一中得到的cnts分散体与sic粉体、zrb2粉体依次注入球磨机中进行机械球磨,球磨转速为180~220r/min,球磨时间为6~12h,球磨过程中取无水乙醇作为分散介质对混合粉体进行混合分散,得到复合浆料;步骤三:步骤二中得到的复合浆料通过高速离心机进行高速离心,高速离心机的转速为5000~15000r/min,离心时间为5~15min,得到分散均匀的复合浆料;步骤四:将步骤三中得到的分散均匀的复合浆料放入恒温干燥箱中进行真空干燥,经研磨后得到干燥的zrb2-sic-cnts复相粉体;步骤五:将步骤四中得到的zrb2-sic-cnts复相粉体通过放电等离子烧结法进行烧结,烧结温度为1500~1800℃,升温速率为50~200℃/min,保温时间为5~15min,烧结压力为30~50mpa,再将烧结后的材料冷却至室温,得到zrb2-sic-cnts超高温陶瓷复合材料。具体地,步骤一中所述cnts的直径为40~60nm,长度为5~15μm。具体地,步骤二中所述sic粉体的平均粒径为0.5~0.7μm,且zrb2粉体的平均粒径为200nm~2μm。具体地,所述cnts分散体的体积分数为10~40%,sic粉体的体积分数为20~30%,zrb2粉体的体积分数为30~70%。具体地,步骤二中所述球磨机为行星式球磨机,且球磨机中球磨珠的直径为0.02mm。3.有益效果(1)本发明所采用的cnts对zrb2进行增韧,能有效提高制备的陶瓷复合材料的断裂韧性,能有效通过引入sic粉体改善材料烧结性能,通过第二相sic颗粒的钉扎作用抑制了基体zrb2在烧结过程中的晶粒长大,使其具有足够的表面能,进而实现了材料的致密化,使得材料的力学性能得到了显著的提高,同时有效通过对cnts在超高温陶瓷中分散性的调控,实现了zrb2-sic-cnts超高温陶瓷复合材料力学性能的提升,不仅提高了材料的致密度,增强了材料的抗弯强度,还提升了材料的断裂韧性,从而有效提高了材料在超高温条件下的适用性。(2)本发明所采用的制备方法,通过高速离心机对材料进行离心成型的方式,能快速地将球磨后浆料中的酒精和粉体分离,避免了传统的干燥过程中cnts的团聚问题,进一步提高了cnts在超高温陶瓷粉体中的分散性,从而获得了微结构均匀的cnts增韧超高温陶瓷复合材料,有利于保证制备材料力学性能的提升;(3)本发明所采用的放电等离子烧结技术具有快速烧结的特点,缩短了烧结时间,缓解了cnts与超高温陶瓷基体间的化学反应,有效改善了cnts在烧结过程中的结构损伤问题,保证了cnts的结构完整性,从而有效保证了cnts增韧zrb2后制备出的超高温陶瓷复合材料的断裂韧性,使得制备出的超高温陶瓷复合材料致密度最大可达到100%,致密度最低不低于99.5%,抗弯强度最大可达到899mpa,抗弯强度最低不低于541mpa,断裂韧性最大可达到7.13mpa·m1/2,断裂韧性最低不低于5.13mpa·m1/2。综上,本发明所提供的一种cnts增韧zrb2超高温陶瓷复合材料的制备方法,能有效通过离心成型的方式,提高cnts在超高温陶瓷粉体中的分散性,从而获得了微结构均匀的cnts增韧超高温陶瓷复合材料,进而提高制备的陶瓷复合材料的断裂韧性,能有效通过sic粉体的引入改善材料的烧结性能,进而实现了材料的致密化,增强了材料的抗弯强度,使得制备出的超高温陶瓷复合材料致密度最大可达到100%,抗弯强度最大可达到899mpa,断裂韧性最大可达到7.13mpa·m1/2,有效提高了材料在超高温条件下的适用性。附图说明图1为经过离心成型后的zrb2-sic-cnts超高温陶瓷复相粉体形貌。具体实施方式下面结合实施例对本发明作进一步详细的说明。实施例1一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,包括如下步骤:步骤一:取直径为50nm,长度为15μm的cnts加入到无水乙醇中进行超声分散,超声分散时间为30min,超声分散过程中对其进行持续震荡搅拌,得到cnts分散体;步骤二:将步骤一中得到的cnts分散体与sic粉体、zrb2粉体依次注入球磨机中进行机械球磨,其中sic粉体的平均粒径为0.5μm,zrb2粉体的平均粒径为200nm,且cnts分散体的体积分数为20%,sic粉体的体积分数为20%,zrb2粉体的体积分数为60%,球磨机为行星式球磨机,且球磨机中球磨珠的直径为0.02mm,球磨转速为200r/min,球磨时间为10h,球磨过程中取无水乙醇作为分散介质对混合粉体进行混合分散,得到复合浆料;步骤三:步骤二中得到的复合浆料通过高速离心机进行高速离心,高速离心机的转速为10000r/min,离心时间为5min,得到分散均匀的复合浆料;步骤四:将步骤三中得到的分散均匀的复合浆料放入恒温干燥箱中进行真空干燥,得到干燥的zrb2-sic-cnts复相粉体;步骤五:将步骤四中得到的zrb2-sic-cnts复相粉体通过放电等离子烧结法进行烧结,烧结温度为1500℃,升温速率为100℃/min,保温时间为10min,烧结压力为30mpa,再将烧结后的材料冷却至室温,得到zrb2-sic-cnts超高温陶瓷复合材料。实施例2本实施例与实施例1的区别在于,步骤一中取直径为50nm,长度为10μm的cnts进行超声分散,超声分散时间为40min;步骤二中取sic粉体平均粒径为0.5μm,zrb2粉体的平均粒径为1μm,且cnts分散体的体积分数为30%,sic粉体的体积分数为20%,zrb2粉体的体积分数为50%,球磨转速为220r/min,球磨时间为6h;步骤三中高速离心机的转速为12000r/min,离心时间为5min;步骤五中烧结温度为1700℃。其他同实施例1。实施例3本实施例与实施例1的区别在于,步骤一中超声分散时间为40min;步骤二中取sic粉体的平均粒径为0.7μm,zrb2粉体的平均粒径为0.5μm,且cnts分散体的体积分数为25%,sic粉体的体积分数为20%,zrb2粉体的体积分数为55%,球磨转速为200r/min,球磨时间为8h;步骤三中高速离心机的转速为10000r/min,离心时间为10min;步骤五中烧结温度为1600℃。其他同实施例1。实施例4本实施例与实施例1的区别在于,步骤一中取直径为60nm,长度为15μm的cnts进行超声分散,超声分散时间为30min;步骤二中取sic粉体的平均粒径为0.5μm,zrb2粉体的平均粒径为0.5μm,且cnts分散体的体积分数为30%,sic粉体的体积分数为20%,zrb2粉体的体积分数为50%,球磨转速为200r/min,球磨时间为8h;步骤三中高速离心机的转速为12000r/min,离心时间为8min;步骤五中烧结温度为1700℃,升温速率为150℃/min。其他同实施例1。实施例5本实施例与实施例1的区别在于,步骤一中取直径为50nm,长度为5μm的cnts进行超声分散,超声分散时间为60min;步骤二中取sic粉体的平均粒径为0.5μm,zrb2粉体的平均粒径为2μm,球磨转速为220r/min,球磨时间为12h;步骤三中高速离心机的转速为8000r/min,离心时间为15min;步骤五中烧结温度为1800℃,保温时间为15min。其他同实施例1。上述各项实施例经检测后得出的致密度、抗弯强度和断裂韧性见下表:具体实施例致密度(%)抗弯强度(mpa)断裂韧性(mpa·m1/2)实施例199.8643±1026.02±0.89实施例299.7754±1136.08±0.78实施例3100789±1106.11±1.02实施例499.5657±986.05±0.76实施例599.6702±1016.08±0.87经试验得出,通过离心成型的方式,能有效提高制备的陶瓷复合材料的断裂韧性,实现了材料的致密化,增强了材料的抗弯强度,不仅有效提升了制备出的zrb2-sic-cnts超高温陶瓷复合材料的力学性能,还能使得制备出的超高温陶瓷复合材料致密度最大可达到100%,抗弯强度最大可达到899mpa,断裂韧性最大可达到7.13mpa·m1/2,有效提高了材料在超高温条件下的适用性。请参阅附图1,由图可以看出,离心成型后获得的zrb2-sic-cnts超高温陶瓷复相粉体微观形貌中,颗粒状物质为zrb2-sic超高温陶瓷粉体,晶须状物质为碳纳米管,晶须状的碳纳米管在颗粒状的超高温陶瓷粉体中分散均匀,未产生团聚问题,因此,该方法制备的陶瓷复合材料能有效提高cnts在超高温陶瓷粉体中的分散性,避免产生团聚,从而为制备微观结构均匀、力学性能优异的zrb2-sic-cnts超高温陶瓷复合材料的奠定了工艺基础。本

技术领域:

中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求范围内。当前第1页1 2 3 

技术特征:

1.一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,其特征在于,包括如下步骤:

步骤一:取cnts加入到无水乙醇中进行超声分散,超声分散时间为30~60min,超声分散过程中对其进行持续震荡搅拌,得到cnts分散体;

步骤二:将步骤一中得到的cnts分散体与sic粉体、zrb2粉体依次注入球磨机中进行机械球磨,球磨转速为180~220r/min,球磨时间为6~12h,球磨过程中取无水乙醇作为分散介质对混合粉体进行混合分散,得到复合浆料;

步骤三:步骤二中得到的复合浆料通过高速离心机进行高速离心,高速离心机的转速为5000~15000r/min,离心时间为5~15min,得到分散均匀的复合浆料;

步骤四:将步骤三中得到的分散均匀的复合浆料放入恒温干燥箱中进行真空干燥,经研磨后得到干燥的zrb2-sic-cnts复相粉体;

步骤五:将步骤四中得到的zrb2-sic-cnts复相粉体通过放电等离子烧结法进行烧结,烧结温度为1500~1800℃,升温速率为50~200℃/min,保温时间为5~15min,烧结压力为30~50mpa,再将烧结后的材料冷却至室温,得到zrb2-sic-cnts超高温陶瓷复合材料。

2.根据权利要求1所述的一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,其特征在于,步骤一中所述cnts的直径为40~60nm,长度为5~15μm。

3.根据权利要求1所述的一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,其特征在于,步骤二中所述sic粉体的平均粒径为0.5~0.7μm,且zrb2粉体的平均粒径为200nm~2μm。

4.根据权利要求3所述的一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,其特征在于,所述cnts分散体的体积分数为10~40%,sic粉体的体积分数为20~30%,zrb2粉体的体积分数为30~70%。

5.根据权利要求1所述的一种cnts增韧zrb2基超高温陶瓷复合材料的制备方法,其特征在于,步骤二中所述球磨机为行星式球磨机,且球磨机中球磨珠的直径为0.02mm。

技术总结

本发明公开了一种CNTs增韧ZrB2基超高温陶瓷复合材料的制备方法,包括如下步骤:步骤一:取CNTs进行超声分散;步骤二:将步骤一中得到的分散体与SiC粉体、ZrB2粉体进行球磨;步骤三:步骤二中得到的复合浆料进行高速离心;步骤四:将步骤三中得到的分散均匀的复合浆料进行真空干燥;步骤五:将步骤四中得到的复相粉体通过放电等离子烧结法进行烧结。本发明通过离心成型的方式,提高了CNTs在超高温陶瓷粉体中的分散性,从而获得了微结构均匀的CNTs增韧超高温陶瓷复合材料,不仅提高了材料的断裂韧性,还通过SiC粉体的引入改善了材料的烧结性能,增强了材料的致密化和抗弯强度,提升了材料在超高温条件下的适用性。

技术研发人员:桂凯旋;张庆达;汪牵牵;刘方瑜;王刚

受保护的技术使用者:安徽工程大学

技术研发日:.10.16

技术公布日:.01.24

如果觉得《一种CNTs增韧ZrB2基超高温陶瓷复合材料的制备方法与流程》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。