肿瘤康复网,内容丰富有趣,生活中的好帮手!
肿瘤康复网 > 癌细胞中的“团伙作案”:ecDNA驱动癌基因分子间的协同表达

癌细胞中的“团伙作案”:ecDNA驱动癌基因分子间的协同表达

时间:2021-08-14 10:42:05

相关推荐

撰文 | 咸姐

责编 | 兮

#癌症#

DNA不仅可以按其序列编码信息,也可以按其形状编码信息。人类基因组被分割成由染色质纤维折叠成动态的层次结构组成的染色体。这种空间结构(包括许多染色质环)可以将远端元件拉近,并将转录活动组织到不同的区域,从而限制了DNA的调控和转录机制。而在癌症中,这种染色质环境则发生了深远的改变【1】。

近年来,编码癌基因的环状染色体外DNA(ecDNA)被证明在癌症中广泛存在,是癌症基因组的普遍特征,也是人类癌症进展的有力驱动因素。ecDNA是共价闭合双链,不同于在健康体细胞组织中发现的千碱基大小的环状DNA,其大小从100千碱基到数兆碱基不等,且被高度扩增【1】。ecDNA缺乏着丝粒,并且在每次细胞分裂后随机分布在子细胞中,使得其可以快速积累,且可以选择具有耐药性或其他适应性优势的ecDNA变体【2】。ecDNAs可以重新整合到染色体中,因此也可能作为某些染色体扩增的前体【3】。ecDNA具有更高的染色质可及性而缺乏更高的染色质致密性,且包含内源性致癌基因增强子元件,这表明癌基因扩增子可能是通过调控依赖性来扩增转录的【1,4】。值得一提的是,ecDNA存在于正常染色体环境之外,但其在细胞核中的空间组织尚不清楚。此外,ecDNA可以在细胞分裂期间或DNA损伤后聚集,但此生物学后果也尚不清楚。

11月24日,来自美国斯坦福大学的Howard Y. Chang团队在Nature上在线发表题为 EcDNA hubs drive cooperative intermolecular oncogene expression 的文章,研究了致癌ecDNA的空间、表观遗传学和转录动力学,揭示了由聚集在间期细胞细胞核中的约10-100个ecDNA组成的ecDNA“中心”,可以驱动分子间增强子信号以促使癌基因表达扩增,从而作为癌基因协同转录的组合增强子平台。

研究人员利用DNA荧光原位杂交(FISH)技术,使用靶向多个细胞系中的ecDNA扩增的癌基因的探针来观察间期细胞核中ecDNA的定位,包括前列腺癌细胞系PC3(MYC扩增)、结直肠癌细胞系COLO320-DM(MYC扩增)、多形性成胶质细胞瘤细胞系HK359(EGFR扩增)和胃癌细胞系SNU16(MYC和FGFR2扩增)。结果显示,在进行实验的所有ecDNA阳性癌细胞中,尽管有数十到数百个单独的ecDNA分子,这些ecDNA的DNA FISH信号在很大程度上都局限于间期细胞细胞核的特定区域,由此表明ecDNA彼此发生了强烈聚集,该特征被称为ecDNA“中心”。这些ecDNA“中心”所占据的空间比相同大小的相邻染色体片段大得多,提示它们由许多紧密聚集在该空间中的ecDNA分子组成。进一步实验发现,ecDNA的聚集可以发生在具有不同癌基因扩增的各种癌症类型和原发性肿瘤中。

随后,研究人员通过联合DNA和新生RNA FISH,在PC3和COLO320-DM细胞系中观察MYC等位基因的活跃转录,并计算每个ecDNA分子的MYC转录概率。结果显示,大多数新生的MYC mRNA转录本来自ecDNA“中心”,而不是来自染色体位点。ecDNA“中心”上致癌基因的转录活性明显高于染色体位点,表明当同一细胞中有更多的ecDNA拷贝时,每个ecDNA分子转录癌基因的可能性更大,尤其是以ecDNA“中心”的形式。

人类染色体8q24上的MYC癌基因是癌症中体细胞DNA重排的热点,在人类癌症中近30%的MYC扩增以ecDNA的形式存在,通常包含MYC和PVT1(浆细胞瘤变体转录本1,位于MYC 3’端55kb处,是人类癌症的常发断点)的5’端部分。MYC的两侧是超级增强子,以赖氨酸27处的组蛋白H3乙酰化(H3K27ac)和BET蛋白(如BRD4)为标记,MYC转录对抑制剂JQ1置换BET蛋白高度敏感。

为了检测活细胞中的MYC ecDNA,研究人员在COLO320-DM细胞中的MYC ecDNA中插入Tet-operator (TetO)阵列,并用TetR-eGFP或TetR-eGFP(A206K)标记ecDNA,以最小化GFP二聚化。实验结果显示,JQ1能有效降低COLO320-DM细胞(含MYC ecDNA)中MYC mRNA的水平,但对COLO320-HSR细胞(染色体MYC扩增子或均匀染色区)中MYC mRNA的水平没有显著影响(注:这两种细胞来自同一患者肿瘤,除了MYC扩增的背景外,具有高度相似的遗传背景)。此外,TetO-GFP COLO320-DM细胞的活细胞成像显示ecDNA“中心”在有丝分裂期间分解成更小的颗粒,之后又重新形成大的“中心”。值得注意的是,有丝分裂后的ecDNA“中心”的组装会被JQ1阻断。这些结果表明,COLO320-DM细胞中ecDNA“中心”的形成、维持和癌基因转录对BET蛋白的溴域H3K27ac相互作用具有独特的依赖性。

为了将ecDNA结构与MYC转录调控联系起来,研究人员使用五种正交方法重建了COLO320-DM ecDNA,报告了迄今为止组装的最大的ecDNA结构——一个4.328 Mb的ecDNA,包含PVT1-MYC融合、标准MYC序列和来自多个染色体起源的序列(染色体6、8、13和16)的多个拷贝,并且利用DNA FISH验证了PLUT、PCAT1和MYC基因在重建预测的ecDNA上的共定位。接下来,研究人员确定了与癌基因高表达相关的ecDNA调控元件。来自72,049个COLO320-DM和COLO320-HSR细胞的配对单细胞ATAC–seq和RNA-seq确定了47个与高MYC表达相关的ecDNA调控元件,而目前驱动ecDNA上MYC癌基因表达的PVT1启动子(PVT1p),在ecDNA“中心”内接受了广泛的组合增强子输入。进一步地实验表明,分子间增强子-启动子在ecDNA“中心”激活,同时研究人员证实PVT1p作为一种DNA元件,能够反式激活ecDNA“中心”。

那么分子间增强子-基因的相互作用是否可以被精确定位和干扰呢?以SNU16细胞系(它包含两种不同的ecDNA类型:一种来自8号和11号染色体的MYC扩增子和一种来自10号染色体的FGFR2扩增子)为研究对象,实验结果表明FGFR2和MYC ecDNA是共同选择的,因此这两个扩增子上的增强子可协同激活MYC表达。然后,MYC蛋白又可以反过来激活FGFR2的表达。顺式和反式调控元件之间几乎没有重叠,这也证实分子间增强子元件是直接通过反式而非下游效应修改基因表达。而进一步评估独立癌症类型中的分子间ecDNA的相互作用显示ecDNA“中心”内的分子间增强子基因激活发生在不同的癌基因位点和多种癌症类型中。

综上所述,ecDNA“中心”内ecDNA的局部聚集促进了新的分子间增强子-基因相互作用和癌基因过度表达(图1)。与偏向局部顺式调控元件并跨越100-300nm的染色体转录中心不同,ecDNA“中心”可以跨越1000 nm以上,且涉及位于不同ecDNA分子上的反式调控元件。毫无疑问,这一发现对于ecDNA如何进行选择以及ecDNA上癌基因调控的重组如何促进转录具有深远的意义。同时,对于ecDNA“中心”促进癌基因转录的认识为癌症治疗提供新的潜在机会。

图1

原文链接:

/10.1038/s41586-021-04116-8

参考文献

1. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 1–5 () doi:10.1038/s41586-019-1763-5.

2. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics 52, 891–897 ().

3. Carroll, S. M. et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525–1533 (1988).

4. Morton, A. R. et al. Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell 0, ().

如果觉得《癌细胞中的“团伙作案”:ecDNA驱动癌基因分子间的协同表达》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。